top of page

Publications

41598_2022_14247_Fig1_HTML.png

piRNA-like small RNAs target transposable elements in a Clade IV parasitic nematode.

Mona SuleimanAsuka KounosuBen MurcottMehmet DayiRebecca PawlukAkemi YoshidaMark VineyTaisei Kikuchi & Vicky L. Hunt(2022)  Scientific Reports volume 12, Article number: 10156

Tanzila Afrin, Kazunori Murase, Asuka KounosuVicky L. Hunt, Mark Bligh, Yasunobu Maeda, Akina Hino, Haruhiko Maruyama, Isheng J. Tsai and Taisei Kikuchi (2019)Sequential Changes in the Host Gut Microbiota During Infection With the Intestinal Parasitic Nematode Strongyloides venezuelensis. Front. Cell. Infect. Microbiol.  https://doi.org/10.3389/fcimb.2019.00217

Genome of the fatal tapeworm Sparganum proliferum uncovers mechanisms for cryptic life cycle and aberrant larval proliferation

Kikuchi, T., Dayi, M., Hunt, V. L., Ishiwata, K., Toyoda, A., Kounosu, A., Sun, S., Maeda, Y., Kondo, Y., de Noya, B. A., Noya, O., Kojima, S., Kuramochi, T. & Maruyama, H., 31 Dec 2021, In: Communications Biology. 4, 1, 649.

c. inopin.png

Kanzaki N*, Tsai I J*, TanakaR*, Hunt V L*, Tsuyama K, Liu K, Maeda Y, Woodruff G, Namai S, Kumagai R, Tracey T, Holroyd N, Murase K, Kitazume, Billah M, Ke H, Wang J, BerrimanM, SternbergP, SugimotoA, Kikuchi T (2018).  Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nature Communications 9:3216. * these authors contributed equally

https://www.nature.com/articles/s41467-018-05712-5.pdf

Screen Shot 2018-10-31 at 13.47.45.png

Hunt V L (2018). Caenorhabditis inopinata: the unexpected sibling species of C. elegans.  https://natureecoevocommunity.nature.com/users/121938-vicky-hunt/posts/37637-caenorhabditis-inopinata-the-unexpected-sibling-species-of-c-elegans.

Blog article for Nature Ecology & Evolution.

Screen Shot 2018-10-31 at 13.58.44.png

Hunt V L, Hino A, Yoshida A, Kikuchi T (2018). Comparative transcriptomics gives insights into the evolution of parasitism in Strongyloides nematodes at the genus, subclade and species level. Scientific Reports,8: 5192. 

Screen Shot 2018-10-31 at 14.06.21.png

Hunt V L, Tsai I J, Viney M, (2017). The genome of Strongyloidesspp. give insights into protein families with a putative role in parasitism. Parasitology 144 (3) 343-358.

https://www.ncbi.nlm.nih.gov/pubmed/27618747

Bayliss S, Hunt V L, Yokoyama M, Thorpe H, Feil E (2017). The use of Oxford Nanopore native barcoding for complete genome assembly. GigaScience, 6(3):1-6.

https://www.ncbi.nlm.nih.gov/pubmed/28327913

Hunt V L, Tsai I J, Coghlan A, Reid A J, Holroyd N, Foth B J, Tracey A, Cotton J A, Stanley E J, Beasley H, Bennett H, Brooks K, Harsha B, Kajitani R, Kulkarni A, Harbecke D, Nagayasu E,Nichol S, Ogura Y, Quail M A, Randle N, Xia D, Brattig N, Ribeiro D M, Sanchez-Flores A, Hayashi T,Itoh T, Denver D R, Grant W, Stoltzfus J D, Lok J B, Murayama H, Wastling J, Streit A, Kikuchi T, Viney M, Berriman M. (2016). The genomic basis of parasitism in the Strongyloides clade of nematodes. Nature Genetics,48: 299-307.

https://www.nature.com/articles/ng.3495

Hunt V L, Zhong W, McClure C D, Mlynski D, Duxbury E M L, Charnley A K & Priest N. (2016). Adaptive switch in life history strategy driven by cold-seeking behaviour in infected fruit flies. Journal of Animal Ecology, 85 (1): 178-186.

McClure C D., Zhong W, Hunt V L, Chapman, F M, Hill, F V & Priest N. (2014) Life-history trade-offs and temporary genetic effects underlying pathogen-induced hormesis in the fruit fly. Evolution, 68(8): 2225-2233.

Hunt V L, Charnley A K, Pickering S, Lock G. (2011) Application of infrared thermography to the study to behavioural fever in the desert locust. Journal of Thermal Biology, 36(7): 443-451.

Hunt V L, Charnley A K. (2011) Inhibitory effect of the fungal toxin, Destruxin-A, on behavioural fever in the desert locust, Schistocerca gregaria. Journal of Insect Physiology, 57(10): 1341-1346.

bottom of page